Exponential Dichotomies and Homoclinic Orbits in Functional Differential Equations*
نویسنده
چکیده
Suppose an autonomous functional differential equation has an orbit r which is homochnic to a hyperbolic equilibrium point. The purpose of this paper is to give a procedure for determining the behavior of the solutions near r of a functional differential equation which is a nonautonomous periodic perturbation of the original one. The procedure uses exponential dichotomies and the Fredholm alternative. It is also shown that any smooth function p(f) defined on the reals which approaches zero monotonically as t + k co is the solution of a scalar functional differential equation and generates an orbit homoclinic to zero. Examples illustrating the results are also given.
منابع مشابه
Exponential Dichotomies and Homoclinic Orbits from Heteroclinic Cycles
In this paper, we investigate the homoclinic bifurcations from a heteroclinic cycle by using exponential dichotomies. We give a Melnikov—type condition assuring the existence of homoclinic orbits form heteroclinic cycle. We improve some important results.
متن کاملChaos in PDEs and Lax Pairs of Euler Equations
Recently, the author and collaborators have developed a systematic program for proving the existence of homoclinic orbits in partial differential equations. Two typical forms of homoclinic orbits thus obtained are: (1) transversal homoclinic orbits, (2) Silnikov homoclinic orbits. Around the transversal homoclinic orbits in infinite-dimensional autonomous systems, the author was able to prove t...
متن کاملDetection of symmetric homoclinic orbits to saddle-centres in reversible systems
We present a perturbation technique for the detection of symmetric homoclinic orbits to saddle-centre equilibria in reversible systems of ordinary differential equations. We assume that the unperturbed system has primary, symmetric homoclinic orbits, which may be either isolated or appear in a family, and use an idea similar to that of Melnikov’s method to detect homoclinic orbits in their neig...
متن کاملExistence of Homoclinic Solutions for a Class of Second-Order Differential Equations with Multiple Lags
This paper is concerned with the existence of homoclinic orbits for secondorder differential equations with multiple lags. By using Mawhin’s continuation theorem, a nontrivial homoclinic orbit is obtained as a limit of a certain sequence of periodic solutions of the equation. AMS Subject Classifications: 34K15, 34C25.
متن کاملSingular Perturbation Theory for Homoclinic Orbits in a Class of Near-Integrable Hamiltonian Systems∗
This paper describes a new type of orbits homoclinic to resonance bands in a class of near-integrable Hamiltonian systems. It presents a constructive method for establishing whether small conservative perturbations of a family of heteroclinic orbits that connect pairs of points on a circle of equilibria will yield transverse homoclinic connections between periodic orbits in the resonance band r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003